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1 Introduction

During this semester in the Directed Reading Program, my mentor, Max Ri-
estenberg helped me explore groups, group actions, projective geometry and
hyperbolic space. Some of the readings that helped in the creation of this paper
are C. Stanley Ogilvy’s book, Excursions in Geometry [1] and Marc Troyanov’s
paper entitled On the origin of Hilbert Geometry [2].

2 Projective Geometry

Imagine a Cartesian plane with all the lines that go through the origin. The
lines that pass through (0,1) and (0,-1) are considered as having slope infinity.
This is considered our line at infinity. Each line that extends from the origin is
parallel to one another. Another point on the line could be chosen, so lines that
go through this point are parallel to each other.

Definition 1. R2 together with its line at infinity is the projective plane. If
two coplanar lines are parallel in the Euclidean sense, their point of intersection
lies on the line at infinity.

3 The Cross Ratio

Definition 2. For a line

A DC B

the cross ratio is defined

[A,D,B,C] =
DC ·AB

DB ·AC

Definition 3. A projection from a point O in ordinary 3-space (R3) maps the
points of a given plane into points of another given plane, as long as O does not
lie in either plane. Points and lines are invariant, but angles are not.

Theorem 1. The cross ratio is invariant under projection.
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Proof. Recall the Law of Sines which states that in any triangle the sines of the
angles are proportional to the opposite sides:

sin(A)

a
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sin(B)

b
=

sin(C)
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We can use the law of sines to find the cross-ratio for ACBD

sin(e)

DC
=

sin(j)

OC
=⇒ DC

sin(e)
=

OC

sin(j)

=⇒ DC =
OCsin(e)

sin(j)

AB

sin(g)
=

OB

sin(i)
=⇒ AB =

OBsin(g)

sin(i)

DB

sin(f)
=

OB

sin(j)
=⇒ DB =

OBsin(f)

sin(j)

AC

sin(h)
=

OC

sin(i)
=⇒ AC =

OCsin(h)

sin(i)

We can plug this into the cross ratio

[A,D,B,C] =
DC ·AB

DB ·AC

=

OCsin(e)
sin(j) ·

OBsin(g)
sin(i)

OBsin(f)
sin(j) ·

OCsin(h)
sin(i)

=
OCsin(e) ·OBsin(g)

OBsin(f) ·OCsin(h)
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=
sin(e) · sin(g)

sin(f) · sin(h)

We can also use the law of sines to find the cross-ratio for A′C ′B′D′

sin(e)

D′C ′
=

sin(l)

OC ′
=⇒ D′C ′

sin(e)
=

OC ′

sin(l)

=⇒ D′C ′ =
OC ′sin(e)

sin(l)

A′B′

sin(g)
=

OB′

sin(k)
=⇒ A′B′ =

OB′sin(g)

sin(k)

D′B′

sin(f)
=

OB′

sin(l)
=⇒ D′B′ =

OB′sin(f)

sin(l)

A′C ′

sin(h)
=

OC ′

sin(k)
=⇒ A′C ′ =

OC ′sin(h)

sin(k)

We can plug this into the cross ratio

[A′, D′, B′, C ′] =
D′C ′ ·A′B′

D′B′ ·A′C ′

=

OC′sin(e)
sin(l) · OB′sin(g)

sin(k)

OB′sin(f)
sin(l) · OC′sin(h)

sin(k)

=
OC ′sin(e) ·OB′sin(g)

OB′sin(f) ·OC ′sin(h)

=
sin(e) · sin(g)

sin(f) · sin(h)

[A′, D′, B′, C ′] = [A,D,B,C] =
sin(e) · sin(g)

sin(f) · sin(h)

Therefore the cross ratio is preserved under projection.

4 The Hilbert Metric

Definition 4. A convex projective domain Ω is an open, nonempty, convex
subset of RP2 whose closure lies in an affine chart.

The Hilbert metric can be used to define distance on a convex projective
domain.
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Definition 5. (Hilbert metric) For a bounded convex region Ω in R2. A and
B exist in the region, creating a line where X and Y are on the boundary ∂Ω.

Y

X

A
B

d(A,B) = 1
2 log[X,Y,B,A] where [X,Y,B,A] = Y A·XB

YB·XA

Definition 6. A metric space is a set X together with a function d which
assigns a real number d(x, y) to every pair x, y ∈ X satisfying

1. d(x, y) > 0, and d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, y) + d(y, z) ≤ d(x, z)

Theorem 2. The Hilbert Metric is a metric space.

Proof. 1. Distance is defined by d(A,B) = 1
2 log[X,Y,B,A] = 1

2 log
(

Y A·XB
YB·XA

)
.

Because Y B < Y A and XA < XB, it is clear that Y A
Y B

,XB
XA

> 1.

=⇒ d(A,B) =
1

2
log

(
Y A ·XB

Y B ·XA

)
> 0

If A=B, then XA = XB and Y A = Y B. And therefore d(A,B) =
1
2 log[X,Y,B,A] = 1

2 log(Y A·XB
YB·XA

) = 1
2 log(1 · 1) = 0

Now assume d(A,B) = 0

=⇒ 1

2
log[X,Y,B,A]

=⇒ log[X,Y,B,A] = 0

=⇒ Y A ·XB

Y B ·XA
= 1

=⇒ XA = XB ∧XA = XB

or
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Y B = XB ∧ Y A = XB

=⇒ A = B ∨ Y = X

But A and B are assumed to lie between X and Y , so if X and Y are
equal, X = Y = A = B. Therefore A = B.

2.

d(B,A) =
1

2
log[Y,X,A,B] =

1

2
log

(
XB · Y A

XA · Y B

)
=

1

2
log

(
Y A ·XB

Y B ·XA

)
=

1

2
log[X,Y,B,A] = d(A,B)

3.

Y

X

A
B

W

T

U

Z
V

X’

Y’

C

D

Note: [U, V,C,A] = [X ′, Y ′, D,A] and [Z, T,B,C] = [X ′, Y ′, B,D]

d(C,A) + d(C,B) =
1

2
log[U, V,C,A] +

1

2
log[Z, T,B,C]

=
1

2
log[X ′, Y ′, D,A] +

1

2
log[X ′, Y ′, B,D]

=
1

2
log([X ′, Y ′, D,A] · [X ′, Y ′, B,D])

=
1

2
log

(
Y ′A ·X ′D
Y ′D ·X ′A

)
·
(
Y ′D ·X ′B
Y ′B ·X ′D

)
=

1

2
log

(
Y ′A ·X ′D · Y ′D ·X ′B
Y ′D ·X ′A · Y ′B ·X ′D

)
=

1

2
log

(
Y ′A ·X ′B
X ′A · Y ′B

)
=

1

2
log[X ′, Y ′, B,A]
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So,

d(C,A) + d(C,B) =
1

2
log[X ′, Y ′, B,A]

The distance d(A,B) depends on the convex domain, so d(A,B) becomes
greater as X approaches A and Y approaches B. This means the following
equality is true.

1

2
log[X ′, Y ′, B,A] ≥ 1

2
log[X,Y,B,A]

Therefore d(C,A) + d(C,B) ≥ d(A,B). And the space is a metric space.
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